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Abstract: The Quaternary transformation of the inherited mountain relief was controlled by three fac-

tors: cyclic climatic changes, resistance of the substratum and neotectonic uplift. Cyclic climatic fluc-

tuations in the majority of European mountains were reflected in the alternation of interglacial and 

cold stages, the former characterized by a dominance of forest and chemical weathering, the latter 

by permafrost, solifluction, wind activity and, at higher elevations, by glacier advances. The transitio-

nal phases played an important role as periods of re-establishment of water circulation and transfer of 

regolith and sediment, formed during the previous cold or interglacial stage. The rates of degradation 

of inherited planation surfaces and slopes depend on bedrock resistance. In the case of less resistant 

flysch deposits, degradation during a single (last) cold stage reached 10 metres. Therefore, the higher 

planation levels may have been either better preserved on more resistant bedrock or even emphasi-

zed by cryoplanation processes. The lowest piedmont developed on less resistant beds was lowered 

to 50 m. In the young mountains, the Quaternary uplift may have played an additional role. In the case 

of uplift reaching or exceeding several hundred metres, the former fluvial forms were shifted to the 

cryonival or even nival (glacial) vertical zone where they became entirely transformed.

Key words: mountains, inherited landscapes, Quaternary transformation, climatic changes, neotec-
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Among the existing mountain ranges we distinguish two basic types. The 

first type is represented by older planated blocks which were later lifted along 

fault lines and dissected upstream from their margins. The second type compris-

es young orogens gradually expanding outward towards the margins of continen-

tal plates. In such mountain ranges, the successive orogenic episodes were sep-

arated by the formation of piedmont levels that developed mainly along a fluvial 

system of valleys dissecting them.

The transformation of the inherited relief during the mid- and Younger Qua-

ternary (last 0.5–1.0 mil. years) was controlled by three main factors: cyclic cli-

matic fluctuations expressed in glacial and interglacial stages, by differentiated 

resistance of the substratum and by neotectonic uplift. The role of these factors 

will be exemplified by the results of studies conducted in the Polish flysch Car-

pathians, the range closest to the zone of the Scandinavian ice-sheet advance.
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Climatic fluctuations are expressed in the vertical shifting of morphoclimatic 

zones of an order of 800–1000 m that repeats during every cold stage. In the low-

er belt of the Carpathians and other European mountains, this was reflected by 

the alternation of interglacial stages with the occurrence of forests and treeless 

cold stages. Deep infiltration and chemical weathering during interglacials led to 

the formation of soil covers. During cold stages with the expansion of permafrost, 

processes such as overland flow, congelifluction and wind activity prevailed. In 

the old mountain systems, thick regolith covers produced as a result of subtrop-

ical weathering were degraded, exhuming structure-controlled relief that is well 

known from granitic massifs of the Sudetes (M i g o ń  2011) or Dartmoor (L i n t o n 

1955) and others. At higher elevations advances of valley glaciers or formation of 

ice sheets, as in the Scandinavian Mountains, took place. Even during short epi-

sodes such as the Younger Dryas small ice caps developed over the Scottish High-

lands (C l a p p e r t o n,  S u d g e n  1977).

During transitional phases water circulation was re-established, followed by 

establishment of vegetation and transfer of regolith and sediment from slopes 

and along valleys. These transitional phases lasted about 50% of the last cold 

stage. These phases were typified by transfer of regolith and deposits formed dur-

ing the previous phase. It may be exemplified by thick early-Weichselian alluvial 

fans well documented at the margin of the Moravian-Silesian Beskid in the flysch 

Carpathians (H r a d e c k y  et al. 2011). Similarly, high transfer of regolith is con-

nected with thick solifluction layers of long Interpleniglacial phase registered at 

many localities in the flysch Carpathians (58–25 ka BP — K l i m a s z e w s k i  1971; 

S t a r k e l  1968; S t a r k e l  et al. 2007). That Interpleniglacial phase is also reflect-

ed in 20–30 m thick alluvium forming extensive fans at the foreland of the flysch 

Carpathians (S t a r k e l  1995; G ę b i c a  2004). Finally, the Late Glacial melting of 

permafrost was expressed in deep infiltration and removal of periglacial depos-

its (S t a r k e l  1960, 1995; Pe l l e g r i n i  et al. 2006; M a r g i e l e w s k i  2006, Fig. 1).

The rate of degradation of the inherited Tertiary planation surfaces and 

slopes depended on climatic variations and bedrock resistance. For example, 

three levels developed in the folded flysch Carpathians: IM level — intramontane 

level (of Pannonian age) at 300–400 m above river channels; SM level — submon-

tane level (of upper Pliocene age) at 200 m; and VL level — valley level (of lower 

Quaternary age) about 80–100 m above river channels — (see: S t a r k e l  1965, 

1987b; M i n a r  et al. 2004, 2011; Z u c h i e w i c z  2011, Fig. 2).

The highest level (IM) is preserved on flat ridgetops underlain by resistant 

sandstones, but mostly forms horizontal axis of ridges (S t a r k e l  1965). Many of 

these flat surfaces show traces of distinct transformation by cryoplanation pro-

cesses during the Quaternary.

The middle level (SM) is underlain by rocks of high to medium resistance 

and is separated from the lowest level by steep 50–100 m high and mainly struc-

ture-controlled scarps. The landscape of this level comprises undulated ridges 

with very rare flat fragments, preserved in the interfluve areas, and isolated tors 
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up to 10–20 m high, indicating the depth of alternating weathering and cryopla-

nation processes.

The most complex relief is represented by the lowest piedmont level called 

“valley level” VL that developed along larger river valleys. It can be identified at 

elevations from 20–50 m (above river water level) in intramontane depressions 

to 100–120 m in the upstream sections of major river valleys (Mazur 1963; Starkel 

1965; Zuchiewicz 2011). It developed mainly on less resistant shales and sand-

stones. In the case of vertically bedded rocks, the role of resistance is well-ex-

pressed (Fig. 2). Only on the most resistant bedrock has that level been pre-

served — in the form of a strath terrace with a thick layer of coarse fluvial gravels 

(Starkel 1965). On moderately resistant sandstones wide, flat ridges with single 

Fig. 1. Periglacial covers over slopes and in valley floors of the Beskid Wyspowy (after S t a r k e l 

1960). 1 — thick-bedded Magura sandstones, 2 — Submagura sandstone and shales, 3 — debris co-

vers, 4 — solifluction covers, 5 — alluvia, 6 — overlying lateglacial fans at the outlets of gullies dis-

secting slopes (dated by OSL). Localities representing various parts of synthetic profile underlined

Fig. 2. Relation of two main levels and their preservation to lithology (rock resistance) in the flysch 

Carpathians; 1 — present-day relief (continuous line) and primary flat level (dashed line), + and — 

signs indicate various resistance of bedrock; levels: A — valley level (VL), B — submontane (SM)
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several-metre high tors or undulated flat ridges, separated by niches of valley 

heads, have been preserved (Fig. 3). This indicates that the great transforma-

tion continued during the Quaternary. This type of relief is frequently bordered 

by an edge separating it from a zone of the less resistant shales and sandstones 

located 30–50 m lower. This is a zone of parallel hummocks indicating the low-

ering of the 100-m high VL by at least 50 m. The continuous denudation of those 

nonresistant rocks in the flysch Carpathians led to progressive exhumation of re-

sistant beds and formation of structure-controlled ridges. In the small intramon-

tane depressions in headwater areas, this level is in the form of pediments, dis-

sected up to 20–40 m and later transformed into cryopediments that gradually 

change downslope into colluvial glacis (S t a r k e l  1965, 1987a; C z u d e k, D e -

m e k  1973).

Fig. 3. Elements of relief connected with 100 m valley level in the catchment of upper San river 

(S t a r k e l  1965). 1 — monoclinal ridges above 100 m level, 2 — flattening on humps rising above 

100 m level, 3 — flattening at 100 m level (VL), 4 — residual hills in 100 m level, 5 — humps at 100 

m level, 6 — wide humps lowered, 7 — residual hills lowered, 8 — edges separating relief of 100 m 

level (VL) from slopes of deeper valleys, 9 — structure controlled scarps, 10 — extend of forms con-

nected with 100 m level
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A detailed study of slope sediments (up to 20-m thick) deposited at slope 

bases during the last cold stage showed the effect of a single cold period on 

slope degradation (Fig. 4) to be of an order of 10 m (S o b o l e w s k a  et al. 1964; 

D z i e w a ń s k i, S t a r k e l  1967; S t a r k e l  1969). Then, the total lowering of the 

VL level reaching 50 m during several glacial–interglacial cycles seems not to be 

overestimated. 

In the young orogens the Quaternary tectonic uplift plays an additional role. 

The uplift fluctuated from 100–200 m only in the flysch Carpathians (Z u c h i e -

w i c z  1984, 2010; S t a r k e l  1985) to over 2000 m in the Himalayas or the Pamir 

Mountains (G a n s s e r  1964; K o s t i e n k o  1962; Va l d y i a  1998; and others). 

As the downcutting usually progresses upstream, older forms may be better pre-

served in the upper courses of river valleys. But at the same time we should re-

member that the old relief of interfluve zones has not reached the stage of plana-

tion. The flattening in the interfluve zones is rather the product of younger Qua-

ternary planation by other processes. It is not only the effect of vertical shift of 

morphoclimatic zones of the order 800–1000 m (discussed above) between cold 

stages and interglacial warm phases, but also, in the boreal zone of northern Eur-

asia, of transformation of older planation by ice sheets (as in Scandinavia).

In the central Asian mountains the uplift, exceeding 2 km, transformed the 

whole mountain landscape by shifting an originally fluvial landscape (occupying 

both the headwater zones dissected by the Himalayan valleys and planated ba-

sins of the Tibetan Plateau) to the permanently cryonival or even glacial vertical 

zone (Z h e n g , J i a o  1991). Then deep valleys became wider and deeper by gla-

cial excavation. The glacial overdeepening and thresholds may be indicated on 

the pre-Quaternary steps that prevented younger incision in the hanging upper 

courses of the rivers (B a u m g a r t - K o t a r b a  et. al. 2008).

In transitional elevations, especially in arid central Asia, the higher moun-

tain ranges, elevated now to 3000–4000 m a.s.l., were continuously in cryonival 

Fig. 4. Profile of slope covers on the fossil terrace in axis of the dam in Solina (D z i e w a ń s k i, S t a r -

k e l  1967); 1 — rock surface, 2–6 — covers dating from Middle-Polish glaciation, 2 — alluvia of stre-

am-bed facies (a series), 3 — alluvia mixed with debris (b series), 4 — talus covers (c series), 5 — 

alluvia of flood facies (d series), 6 — solifluction and proluvial covers dating from the decline of gla-

ciation, weathered (e series), 7–8 Vistulian-glaciation covers: 7 — covers predominantly solifluctio-

nal with debris (f, h series), 8 — covers predominantly proluvial (g, i series)

Unauthenticated
Download Date | 5/6/15 11:04 AM



58

belts during both cold and warm stages of the Quaternary (S t a r k e l  1980; K o w -

a l k o w s k i,  S t a r k e l  1984; Pę k a l a,  R e p e l e w s k a - Pę k a l o w a  1993). This 

resulted in the development of whole systems of cryoplanation terraces over 

wide ridges of the Khangai, the Khentai and other mountain ranges and a total 

transformation of the former landscape of uplifted horsts.

These three factors: cyclic climatic fluctuations, diversified lithology of sub-

stratum and active tectonic movements caused that in the mountains the el-

ements of older, pre-Middle to Younger Quaternary relief have been well pre-

served only over very resistant rocks and outside the zone affected by glaciations 

and permafrost. Therefore, the older roots of present-day mountain relief may be 

reconstructed and depicted only on palaeogeomorphological maps (Fig. 5).
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